Hearing icon
Signia™ AX

60-day free trial

Hearing icon
Resound™ One

60-day free trial

Hearing icon
Phonak™ Paradise

60-day free trial

Hearing icon
Online Care

Online Free Hearing Test

Hearing icon
In-Office Care

In-Person Test - Orland

NEW DRUGS COULD HELP PREVENT HEARING LOSS

Happy couple

Researchers from St. Jude Children’s Research Hospital have discovered that inhibiting an enzyme called cyclin-dependent kinase 2 (CDK2) protects mice and rats from noise- or drug-induced hearing loss. The study, which will be published March 7 in the Journal of Experimental Medicine, suggests that CDK2 inhibitors prevent the death of inner ear cells, which has the potential to save the hearing of millions of people around the world.

According to the World Health Organization, 360 million people worldwide, including 32 million children, suffer from hearing loss caused by congenital defects or other factors. These factors include infectious disease, use of certain medicines, or exposure to excessive noise. Yet, there are currently no FDA-approved drugs to prevent or treat hearing loss.

A team of researchers led by Dr. Jian Zuo screened over 4,000 drugs for their ability to protect cochlear cells from the chemotherapy agent cisplatin. Cisplatin is used to treat a variety of cancers but causes irreversible hearing loss in up to 70% of patients.

Zuo and colleagues identified multiple compounds that protected cochlear cells from cisplatin, several of which are already approved to treat other conditions. Three of the ten most effective compounds were inhibitors of an enzyme called CDK2. One of these CDK2 inhibitors, kenpaullone, was more effective than four other compounds that are currently in clinical trials for treating hearing loss.

Injecting kenpaullone into the middle ear protected both mice and rats from cisplatin-induced hearing loss. Moreover, kenpaullone also protected the hearing of mice to noise as loud as 100 dB. “Given that 100-dB noise is in the range of noise insults commonly experienced by people in our society, kenpaullone could have significant clinical application in treating noise-induced hearing loss,” says Zuo.

In the case of cisplatin-induced hearing loss, kenpaullone appears to protect hair cells by preventing CDK2 from stimulating the production of toxic reactive oxygen species from the cells’ mitochondria.

“The robust protection conferred by one-time local delivery of kenpaullone suggests that CDK2 inhibitors may transform the clinical prevention and treatment of cisplatin- and noise-induced hearing loss in patients,” Zuo says. “Modifications of the treatment regimens, additional optimization of the delivery methods via the use of hydrogels, and structural modifications of the compounds via medicinal chemistry could ensure even better results with CDK2 inhibitors in treating hearing loss in humans.”

Related Articles

You might be interested in...

Hearing

BRIEF POSTNATAL BLINDNESS TRIGGERS LONG-LASTING REORGANIZATION IN THE BRAIN

Temporary visual deprivation shortly after birth induces permanent auditory responses in the visual area of the brain, highlighting a crossmodal competition for brain territories during […]

Read More →
Ear Grid

SAY WHAT? HOW THE BRAIN SEPARATES OUR ABILITY TO TALK AND WRITE

Out loud, someone says, “The man is catching a fish.” The same person then takes pen to paper and writes, “The men is catches a […]

Read More →

UB RESEARCHERS TAKE IMPORTANT STEPS TOWARD UNDERSTANDING HOW ANIMALS MAKE SENSE OF THE AUDITORY WORLD

BUFFALO, N.Y. – Sit down with a friend in a quiet restaurant and begin talking, just before the dinner crowd’s arrival. Business is slow at first, […]

Read More →